Development of a SOA formation mechanism
نویسندگان
چکیده
A new mechanism to simulate the formation of secondary organic aerosols (SOA) from reactive primary hydrocarbons is presented, together with comparisons with experimental smog chamber results and ambient measurements found in the literature. The SOA formation mechanism is based on an approach using calculated vapor pressures 5 and a selection of species that can partition to the aerosol phase from a gas phase photochemical mechanism. The mechanism has been validated against smog chamber measurements using α-pinene, xylene and toluene as SOA precursors, and has an average error of 17%. Qualitative comparisons with smog chamber measurements using isoprene were also performed. A comparison against SOA production in the 10 TORCH 2003 experiment (atmospheric measurements) had an average error of only 12%. This contrasts with previous efforts, in which it was necessary to increase partition coefficients by a factor of 500 in order to match the observed values. Calculations for rural and urban-influenced regions in the eastern U.S. suggest that most of the SOA is biogenic in origin, mainly originated from isoprene. A 0-dimensional cal-15 culation based on the New England Air Quality Study also showed good agreement with measured SOA, with about 40% of the total SOA from anthropogenic precursors. This mechanism can be implemented in a general circulation model (GCM) to estimate global SOA formation under ambient NOx and HOx levels.
منابع مشابه
Development of a framework to evaluate service-oriented architecture governance using COBIT approach
Nowadays organizations require an effective governance framework for their service-oriented architecture (SOA) in order to enable them to use a framework to evaluate their current state governance and determine the governance requirements, and then to offer a suitable model for their governance. Various frameworks have been developed to evaluate the SOA governance. In this paper, a brief introd...
متن کاملDevelopment of aroCACM/MPMPO 1.0: a model to simulate secondary organic aerosol from aromatic precursors in regional models
The atmospheric oxidation of aromatic compounds is an important source of secondary organic aerosol (SOA) in urban areas. The oxidation of aromatics depends strongly on the levels of nitrogen oxides (NOx). However, details of the mechanisms by which oxidation occurs have only recently been elucidated. Xu et al. (2015) developed an updated version of the gas-phase Caltech Atmospheric Chemistry M...
متن کاملMechanism of SOA formation determines magnitude of radiative effects
Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate...
متن کاملKinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products
The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gasand aerosol-phase processes. We present a general eq...
متن کاملA functional group oxidation model (FGOM) for SOA formation and aging
Secondary organic aerosol (SOA) formation from a volatile organic compound (VOC) involves multiple generations of oxidation that include functionalization and fragmentation of the parent carbon backbone and likely particlephase oxidation and/or accretion reactions. Despite the typical complexity of the detailed molecular mechanism of SOA formation and aging, a relatively small number of functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008